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Abstract 

This article investigates the application of advanced machine learning algorithms for 

forecasting housing prices. To this end we leverage a dataset of 414 observations of housing deals 

in Taipei and model it with both traditional econometric and novel machine learning algorithms. 

An exhaustive search among 107 alternative methods is conducted and their forecast accuracy is 

reported in detail. Using the root mean squared error (RMSE) as a benchmark metric, we find that 

implementations of the random forest family have superior performance, far surpassing that of 

more traditional approaches such as the multiple linear regression. The results have utility for 

both academics and practitioners and can be easily t ransferred to other forecasting problems in 

economics and business. 
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1. Introduction 

Modern organizations perform a wide array of complex activities in their regular 

operations. In addition to the usual business processes of production, delivery and 

support, many organizations also have activities related to the acquisition and 

management of tangible fixed assets, including real estate. The pricing of this estate is 

necessary to estimate for the purposes of accounting, financial planning, and, most 

importantly, strategic management. Under standard practice, this is often done with the 

help of a dedicated expert appraiser who combines objective market data with subjective 

judgment and adjustments to arrive at a final assessment. The main problem with this 

approach is that it is largely dependent on human judgment, which makes it relatively 

expensive, slow and difficult to scale. These factors result in infrequent or even one-off 

property valuations, although a dynamic market environment often implies significant 

dynamics. 
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In the age of digital transformation this no longer needs to be the case. Modern data 

storage and processing technology, combined with powerful machine learning algorithms 

allow organizations to automate the process of real-time valuation of a given property, 

which can enable its rational management. This article focuses on the best statistical and 

machine learning methods to forecast housing prices. It aims to review and compare a 

wide set of popular forecasting algorithms and outline which provide the most accurate 

results for housing prices. This task is of interest to both organizations involved in the 

sale and purchase of real estate (construction companies, brokers, etc.), as well as 

organizations involved in the financing and securitization of transactions (banks, non-

bank credit institutions, funds, etc.).  

The article is structured as follows: section two presents a compact literature 

review of popular statistical methods and their application to forecasting housing prices; 

section three introduces the data set under study and reports its descriptive statistics. 

Section four applies five of the most common algorithms for modeling the data at and, 

while section five conducts an extensive search for the best forecasting algorithm among 

a set of 106 methods. Finally, section six concludes. 

 

2. Literature Review 

Prediction of housing prices is a highly relevant business problem that has also 

attracted significant attention from researchers. A standard model for this valuation is the 

hedonic pricing approach, whereby prices are determined by both intrinsic characteristics 

of the real estate, as well as characteristics of its environment (Sirmans et al, 2005). 

Among the former we can include the size and type of the property, the number of rooms, 

different features, overall condition, year of construction, location and many others. 

Among the latter are the characteristics of the neighborhood, transport connectivity, 

number of shops, crime rates, different amenities and possibly numerous other factors. 

Essentially, the hedonic pricing approach measures what the consumer is willing to pay 

given the presence of a set of characteristics (ibid.). All those can be summarized as 

explanatory (independent) variables, and the resulting housing prices – as a target 

(dependent) variable. 

Alternatively, one can apply a relatively theory-free set of algorithms to estimate 

precise pricing, given a known structure of the dataset. Many researchers are exploring 

methods such as artificial neural network and comparing them to the more traditional 

approaches leveraging hedonic pricing (see e.g. Ghorbani & Afgheh, 2017), or using pure 

methods from machine learning such as neural networks (Lim et al., 2016) or support 

vector machines (Chen et al., 2017). While some authors use more than one method for 

prediction (e.g. Yeh & Hsu, 2018), they still leverage a somewhat limit set of algorithms 

that are not guaranteed to produce the best results. Therefore, we outline the need for an 
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exercise to create an exhaustive testing of (almost) all relevant regression algorithms and 

identify the ones with best forecasting performance.  

The most popular types of algorithms for such a task include both tradition 

econometric tools such the multiple linear regression as well as a set of more advanced 

machine learning ones such the neural network, the support vector machines, the k-

Nearest Neighbor algorithm, and the decision trees and random forest approaches. Here, 

we shortly review the less well-known approaches and point the interested reader to 

Hastie et al. (2009) for a more detailed description. 

Neural networks  are computational algorithms whose structure is strongly 

influenced by the way the human brain functions. It consists of neurons that send 

activating impulses to each other, this system forming a biological neural network. In a 

statistical neural network, the architecture of the algorithm is similar, with neurons 

playing different variables and values, and activation performed by a predetermined 

mathematical function. It calculates and transmits the various values within the model. 

The explanatory dependent variables form the input layer of the neural network. Each of 

these variables influences the estimation of the final target variable by a series of 

weighted functions, called a non-linear weighted sum (sum). In short, the input layer 

transmits activation pulses, calculated according to a particular activation function K, to 

the first intermediate layer. It, in turn, uses these impulses as input to its activation 

functions to the next layer, and so to the last one that defines the final target variable. For 

more details on the statistical features and characteristics of neural networks, we refer the 

reader to Ripley & Hjort (1996). 

The k-nearest-neighbors (kNN) algorithm has a long history of various 

classification applications, which is due both to its relative simplicity and to the relatively 

good results it produces. The basic idea behind it is that it is a classification algorithm that 

uses the already known classes, which are located close enough to a given observation to 

determine the class of the observation itself. For more details on the calculation and 

statistical properties of this algorithm, we refer the reader to the work of Peterson (2009) 

and Hastie et al. (2009). We emphasize that although it is a compact and relatively 

intuitive algorithm, it can be successful in a number of situations, and its results are 

particularly good in cases with irregular boundaries between different classes of data or in 

which each class has a number clearly differentiated prototypes. 

Decision trees  are an alternative model for modeling tasks related to recognizing 

different classes. Using an array of test data, the trees select the best classifier among a 

set of explanatory variables, with the process flowing iteratively. Initially, at the first 

node, the algorithm selects the variable that best distinguishes the classes from one 

another and selects its optimal value for classification. The task is then branched to the 

value of this variable and the new nodes re-selected the optimal variable and its value, 

resulting in new branching. When a decision is made, the graphical presentation of the 

results looks very much like an inverted tree, where its name comes from. Their main 
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problem is that they are over-adjusting to the data they are trained on (so-called 

overfitting) and that the algorithm can be misled by local optimists. As a result, excellent 

predictive power can be obtained within the data examined and much lower - on another 

set. To solve the major problems of decision trees such as high variation and over-

adjusting, we can combine them into an ensemble model. By collecting a certain number 

of decision trees, we can combine them into a common ensemble model - the so-called 

random forest (randomized regression and classification forest). When training this 

model, initially random samples of data and their characteristics are selected and a  set of 

trees is grown based on them. These are then combined into a single model whereby the 

output value is determined by the weighted values obtained from each tree. For further 

information and more details on this approach, we direct the reader to the seminal article 

by Breiman et al. (2001) on the subject. 

Support vector machines  are classification models that originate in the field of 

machine learning (Cortes & Vapnik, 1995). For given classes or sets of observations, they 

seek to find the optimal classification by calculating the optimal hyperlinearity in the 

middle of the largest distance between the closest points of the different classes. The 

boundary points in this space are called support vectors and hence the very name of this 

family of algorithms. Essentially, the parameters of the this algorithm are evaluated by 

solving quadratic programming problems. More sophisticated machines with support 

vectors can design data with finite number of dimensions on higher dimensional planes 

and classify these planes. For more in-depth discussion, statistical features, and other 

variants of machines with support vectors, we direct the reader to Hastie et al. (2009).  

By leveraging a large number of implementations of these popular types of 

machine learning algorithms to, as well as adding a set of novel one, this paper aims to 

further elaborate and significantly expand previous work in forecasting housing prices 

(Park & Bae, 2015), and thus to bring insight on the optimal modeling strategy for both 

academics and practitioners. 

 

3. Data, Samples, and Descriptive Statistics  

The key business problem we solve is the need to determine and regularly update 

the correct price of a real estate so that the organization can evaluate the effectiveness of 

potential disposals with it (purchase, sale, letting, etc.), as well as to predict the future 

price dynamics in order to minimize the risk of unexpected losses due to adverse trends in 

the property market. For this task, we use data provided by Yeh & Hsu (2018), with 

which the authors test an evaluation algorithm they propose – the so-called. a 

comparative quantitative approach. They (ibid.) compare this new approach with four 

other alternatives - two approaches for hedonic pricing, a multiple linear regression and a 

neural network, and find that it leads to better predictive results.  
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The database itself consists of 414 observations of real estate transactions in Taipei 

(Taiwan) against seven different characteristics - date, years since the construction of the 

building, distance to the metro station, number of nearby shops, geographical coordinates 

(latitude and longitude), unit price area. For convenience of modeling, we divide the date 

into two components - the year and the order of the transaction within the calendar year (a 

combination of day and month). The target variable is the price per unit of area and is a 

continuous numeric variable. For the purposes of estimating the models, we divide the 

data into two subsets. The training set consists of 80% of the original data and is used for 

initial estimation of the model, while the testing set (remaining 20%) is used to obtain 

out-of-sample accuracy metrics as per best practice. This ensures that the models are 

tested on a different data that they are trained on, and thus mitigates the problem of 

overfitting and increases the reliability of the reported accuracy numbers. 

The main statistics of the data under consideration are presented in Table 1. The 

average age of traded properties is 17.7 years, and we observe significant differences in this 

variable. The high standard deviation indicates that there are bot many new and many old 

buildings. Similarly, the the distance to the nearest metro station is 1084 m. on average, but 

with a very high standard deviation. There are 4 stores on average around the property, and 

the average cost per unit area (target variable) is 379,800 new Taiwan dollars per 1 ping. In 

addition, the data include the exact coordinates of the properties, which give an indication of 

the neighborhood in which they are located. Additionally, we have information about the time 

dimension of the transactions - year and sequence (day and month), and these variables allow 

to take into account the dynamic trend in property prices.  

 

Table no. 1 – Descriptive Statistics for Dataset on Housing Prices, N = 414 

Variable Name in 
data 
base  

Mean Std. 
devi. 

Median Min. Max. Skew 
ness 

Kurto-
sis 

Years since 
construction 

age 17.71 11.39 16.10 0.00 43.80 0.38 -0.89 

Distance to 
metro station, 
m 

distance 1083.8 1262.1 492.23 23.38 6488.0 1.88 3.13 

Number of 

nearby shops 
stores 4.09 2.95 4.00 0.00 10.00 0.15 -1.08 

Latitude, 
coord. 

lat  24.97 0.01 24.97 24.93 25.01 -0.44 0.24 

Longitude, 
coord. 

long 121.53 0.02 121.54 121.47 121.57 -1.21 1.15 

Price per unit 
area 

y 37.98 13.61 38.45 7.60 117.50 0.60 2.11 

Year of 
transaction 

year 2012.7 0.46 2013 2012.0 2013 -0.85 -1.29 

Transaction 

order 
seq 348.38 275.03 333.00 0.25 667.00 -0.07 -1.55 

Source: Author calculations based on data by Yeh & Hsu (2018)  



32 

 

The correlation matrix in Figure 1 shows the relationships between the variables under 

consideration. The price per unit area is very strongly and negatively related to the distance 

from the metro station, which is a logical and expected result. In addition, there is a negative 

correlation between the price and the age of the building in which the property is located. We 

see a well-expected positive correlation with the number of stores as well as the geographical 

coordinates of the site. Given the positive association between the coordinates and the number 

of shops, we can conclude that clusters of preferred properties (neighborhoods) are noticeable, 

which are very close to shopping malls and high-cost residential buildings. The weak positive 

correlation between the year of the transaction and the price indicates a certain process of 

rising property prices over time, which should also be taken into account in their modeling.  

 
Figure no. 1 Correlation matrix of data under study 

 
 Figure no. 2 Association between Housing Prices and Distance to  Subway 
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 The dot plot shown in Figure 2 shows in an even clearer way the relationship 

between the distance from the transport points (subway) and the price of the property, this 

relationship being almost linear. However, this should be interpreted with some caution, 

since the vast majority of the areas in the analyzed database are within one kilometer 

(1,000 m) of a metro station. 

Figure 3 shows the relationship between the price per unit area and the number of 

shops in the vicinity. We observe a strong positive relationship between the two, and it is 

valid for the two years for which we have data on transactions. We emphasize that these 

data allow the training of a forecast model for the price of residential properties, as they 

include typical features of interest in the formation of prices in this segment - 

neighborhood (via coordinates), transport connectivity, availability of shops, age of 

buildings.  

 
Figure no. 3 Association between Housing Prices and Number of Shops in Vicinity 

across Transaction Years 

 

 

4. Comparison of Common Approaches  

The classical approach for modeling linear relationships in econometrics is by 

using multiple linear regression. The results of this model are presented in Table 2.  All 

variables considered reach statistical significance at least at the 5% level, with the 

exception of the longitude and the year of the transaction. The year of construction has a 
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strong negative effect, with each year leading to a reduction in the unit cost of 2,740 new 

Taiwan dollars. This effect is significant at p <0.005 levels. Surprisingly, although the 

distance to the metro station reaches statistical significance, the coefficient is negative, 

which is an unexpected result. 
 

Table no. 2 – Coefficients of Linear Regression on Housing Price Data  

Variable Variable 
name in 

model 

Coefficient Standard 
error 

z-statistic S ignificance 

Constant (Intercept) -5699.739 7337.776 -0.777 0.438 

Years since 

construction 

age -0.274 0.046 -6.005 0.000 

Distance to 

metro station, m 

distance -0.005 0.001 -5.326 0.000 

Number of 

nearby shops 

stores 1.208 0.224 5.403 0.000 

Latitude, coord. lat 236.201 51.986 4.544 0.000 

Longitude, 

coord. 

long -32.238 56.126 -0.574 0.566 

Year of 

transaction 

year 1.870 1.103 1.695 0.091 

Transaction 

order 

seq -0.004 0.002 -2.193 0.029 

  R
2
 0.570 Adjusted  

R
2
 

0.562 

 

The number of stores within a close radius is clearly one of the most important 

drives of the unit price. From a statistical point of view, it reaches significance at levels 

well below 1%, and the high positive coefficient also shows its high practical 

significance. Increasing the number of nearby stores by 1 increases the price per unit area 

by 1,208 new Thai dollars. Latitude, but not longitude, is significant, reflecting the 

direction of development of the city (north-south versus east-west). The last indicator - 

the order of the transaction - also reaches significance, with an extremely slight fall in 

prices over the year. The effect is rather small and of little interest in the practical 

management process. The relative importance of the variables is also shown graphically 

in Figure 4. Here the importance of the distance to the subway, the number of shops, and 

the geographical location of the property can be clearly seen. It should be borne in mind 

that, unlike the regression coefficients, the relative importance of the variables does not 

allow one to examine the direction of the effect, but only the contribution to the quality of 

the model.  
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Figure no. 4 Relative Variable Importance in a Linear Multiple Regression Model 

 
  

Among the most popular regression algorithms in the field of machine learning that 

are applicable to this task are the neural network, the kNN algorithm, the random forest, 

and the support vector machine (for another application see e.g. Gerunov, 2019). Their 

predictive accuracy is compared with that of the linear regression in Table 3.  

 
Table no. 3 – Descriptive Statistics for Dataset on Housing Prices, N = 414  

Method  Mean 

Error, Me 

Root Mean 

Squared 

Error, 

RMSE 

Mean 

Absolute 

Error 

Mean 

Percentage 

Error, 

MPE 

Mean 

Absolute 

Percentage 

Error, 
MAPE 

Multiple Linear 

Regression 

0.478 8.015 6.065 -2.097 17.004 

Neural Network  37.135 39.416 37.135 96.970 96.970 

kNN -0.859 9.521 7.233 -6.509 19.859 

Random Forest -0.768 6.519 4.852 -4.437 13.411 

Support Vector 

Machine 

1.864 8.188 6.029 2.008 16.175 

 

Looking at the root mean square error (RMSE) of the forecast, we find that the 

neural network has by far the lowest performance with RMSE = 39.4, followed by the 

kNN algorithm (RMSE = 9.5). The linear regression and the support vector machine 

prove to be good alternatives with almost similar RMSE values. By far the best model is 

that of a random forest with RMSE = 6.5 and mean absolute error rate MAPE = 13.4. The 
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average random forest error is -0.77, which shows some underestimation of the realized 

values. From a practical point of view, the ability to generate area unit estimates with an 

average RMSE error of only $ 6,519 at an average value of $ 39,780 per unit area 

represents a significant and meaningful improvement. 

The relative importance of the variables in the random forest model is presented in 

Figure 5, again underlining the importance of distance from a metro station, geographical 

coordinates and the number of shops in the vicinity. The low importance of the year and 

the sequence of the transaction reflect the limited influence of the time dynamics from 

year to year, as well as the lack of a clear seasonality trend in prices. 

 
Figure no. 5 Relative Variable Importance in a Random Forest Model 

  
 

5. Extensive Search for Optimal Algorithms 

Using the housing price data, we estimate 106 alternative machine learning models 

and investigate their predictive accuracy. The full list of algorityms is presented in the 

Appendix. A histogram of their predictive accuracy with respect to the root of the root 

mean square errors is presented in Figure 6. The vast majority of methods have register a 

RMSE in the range of 7 to about 9. The best algorithms among the tested ones have a 

predictive accuracy of RMSE < 6.5. and those with the worst results can reach an RMSE 

value of over 25. It is notable that while most algorithms tend to neatly cluster together, 

there are some extremely poor performers. On the other hand, a few algorithms have 

markedly better performance than average, thus showing that there is potential business 

value in selecting and using the best ones. 
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Figure no. 6 Forecasting Accuracy of Regression Methods under Study  

 
  

The ten top performers in terms of lowest root mean square error are presented in 

Table 4. It is immediately apparent that seven of them are different implementations of 

the  random forest family. They all exhibit extremely good predictive accuracy, with their 

errors in the range of RMSE = 6.46 to RMSE = 7.10. The other three non-random forest 

algorithms are 2 based on a kernel function and one based on a Gaussian process, whose 

predictive accuracy is about RMSE = 7.10. Here we also calculate a complexity measure 

that takes into account the calculation time needed. The most time-intensive algorithm is 

standardized to a 100%, and the time spent by other is presented as a fraction of that. The 

best method - that of a regularized random forest is only 35 p. p. faster than the slowest in 

the sample. On the other hand, the second best - the quantile random forest - is nearly 20 

times faster than the most resource-intensive, and the difference in predictive accuracy 

between the two is almost imperceptible. 

 

Table no. 4 – Forecasting Accuracy of Top 10 Best Performing Methods 

Type of Algorithm Method 

Mean 

Error, 

Me 

Root 
Mean 

Sqrd. 

Error, 

RMSE 

Mean 

Abs. 

Error 

Comple

xity 

Measur

e 

Regularized Random 
Forest 

RRF 
-0.750 6.459 4.831 64.8% 

Quantile Random Forest qrf 0.001 6.470 4.695 5.2% 
Regularized Random RRFglobal -0.832 6.568 4.890 9.9% 
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Forest 

Random Forest ranger -0.878 6.600 4.884 7.0% 
Parallel Random Forest parRF -0.936 6.689 4.965 3.8% 

Random Forest ranger -0.943 6.689 4.908 4.0% 
Radial Basis Function 
Kernel Regularized Least 
Squares 

krlsRadial 
-0.435 7.068 5.388 14.8% 

Bayesian Additive 
Regression Trees 

bartMachin
e 

-0.795 7.076 5.353 11.1% 

Random Forest by 
Randomization 

extraTrees 
-0.948 7.081 5.137 7.8% 

Gaussian Process with 
Polynomial Kernel 

gaussprPol
y 

-0.501 7.082 5.443 2.1% 

 

This underlines that with this type of task, it is possible to find the optimal point 

between the benefits and the costs of calculating a given algorithm. Moreover, a fast 

calculation speed of the algorithm also indicates the possibility of switching from 

asynchronous to synchronous operations, i.e. from model calculation and subsequent use 

and future updates to real-time analytics, which is used and trained simultaneously. Thus, 

algorithms that both a high accuracy and a low complexity value are prime candidates for 

practical applications in the analytic pipeline. 

 

6. Recommendations and Conclusion 

This article aims to outline how novel and advanced machine learning methods can 

be successfully applied to traditional forecasting problems in economics and business. 

The particular application under study in forecasting the prices in Taipei’s housing 

market, leveraging the data provided by Yeh & Hsu (2018). We applied both traditional 

econometric methods, as well as machine learning algorithms such as implementations of 

neural networks, kNN-type algorithms, Bayesian methods, decision trees and random 

forests, support vector machines and a host of more exotic approaches. Overall, 107 

different statistical algorithms are tested.  The main results are clear – the forecasting 

accuracy of machine learning approaches significantly outperforms that of more 

traditional econometric tools such as the linear regression. Random forests, in particular, 

display the best forecasting performance, reflected in their low root mean squared errors.  

This leads to a number of recommendations that can inform both the forecasting 

theory and practice. In terms of research, the application of machine learning algorithms 

to relevant problems in economics and business seems a fruitful venue for further work. 

These methods can be leveraged to solve a large number of regression and classification 

type of problems and are characterized by the fact that they scale well to the constantly 

increasing amount of available data (so-called big data). Application fields include 
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financial and business forecasting, demand planning, risk management, credit scoring, 

customer segmentation, recommendation engines, and others. From a methodological 

point of view it would be useful to further investigate the performance and stability of 

those algorithms in particular tasks of interest.  

From a practical standpoint, these results can be applied directly for the benefit of 

businesses with activities in the real estate, facility management, or financing. Real-time 

price forecasting and re-evaluation effectively provides valuable information that can be 

fed in organizational decision loops. Apart from improving the internal decision-making, 

this can also be used for regulatory purposes, especially by financial institutions with 

large portfolios in real estate. Whatever the sphere of application, the results obtained aim 

to improve the understanding of how to implement novel machine learning methods to 

forecasting and thus enable modern organizations to take a further step along the path to 

comprehensive digital transformation. 
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APPENDIX 

 

Table no. A1 – Set of Algorithms used for Analysis and Testing  

# Algorithm # Algorithm 

1 Model Averaged Neural Network 55 Multi-Layer Perceptron 

2 Bagged MARS 56 Multi-Layer Perceptron, multiple layers  

3 Bagged MARS using gCV Pruning 57 Monotone Multi-Layer Perceptron Neural 

Network 

4 Bayesian Additive Regression Trees  58 Multi-Step Adaptive MCP-Net 

5 Bayesian Generalized Linear Model 59 Neural Network 

6 Boosted Tree 60 Neural Network 

7 The Bayesian lasso 61 Non-Negative Least Squares  

8 Bayesian Ridge Regression (Model 

Averaged) 

62 Tree-Based Ensembles 

9 Bayesian Ridge Regression 63 Non-Informative Model 

10 Bayesian Regularized Neural 

Networks 

64 Parallel Random Forest 

11 Boosted Linear Model 65 Neural Networks with Feature Extraction 

12 Boosted Tree 66 Principal Component Analysis  

13 Conditional Inference Random Forest 67 Penalized Linear Regression 

14 Conditional Inference Tree 68 Partial Least Squares 

15 Conditional Inference Tree 69 Partial Least Squares Generalized Linear 

Models 

16 Cubist 70 Projection Pursuit Regression 

17 Stacked AutoEncoder Deep Neural 

Network 

71 Quantile Random Forest 

18 Multivariate Adaptive Regression 

Spline 

72 Quantile Regression Neural Network 

19 Elasticnet 73 Ensembles of Generalized Linear Models  

20 Tree Models from Genetic Algorithms  74 Random Forest 

21 Random Forest by Randomization 75 Radial Basis Function Network 

22 Ridge Regression with Variable 

Selection 

76 Relaxed Lasso 

23 Generalized Additive Model using 

LOESS 

77 Random Forest 

24 Generalized Additive Model using 

Splines 

78 Random Forest Rule-Based Model 

25 Gaussian Process 79 Ridge Regression 

26 Gaussian Process with Polynomial 

Kernel 

80 Robust Linear Model 

27 Gaussian Process with Radial Basis 

Function Kernel 

81 Classification and Regression Trees, 

CART, ver. 1 

28 Stochastic Gradient Boosting 82 Classification and Regression Trees, 

CART, ver. 2 

29 Multivariate Adaptive Regression 83 Classification and Regression Trees, 
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Splines CART, ver. 3 

30 Fuzzy Rules via MOGUL 84 Quantile Regression with LASSO penalty 

31 Generalized Linear Model 85 Non-Convex Penalized Quantile 

Regression 

32 Negative Binomial Generalized Linear 

Model 

86 Regularized Random Forest 

33 Boosted Generalized Linear Model 87 Regularized Random Forest 

34 glmnet 88 Relevance Vector Machines with Radial 

Basis Function Kernel 

35 Generalized Linear Model with 

Stepwise Feature Selection 

89 Subtractive Clustering and Fuzzy c-Means 

Rules 

36 Hybrid Neural Fuzzy Inference System 90 Partial Least Squares 

37 Independent Component Regression 91 Spike and Slab Regression 

38 Partial Least Squares 92 Sparse Partial Least Squares  

39 k-Nearest Neighbors 93 Supervised Principal Component Analysis  

40 k-Nearest Neighbors 94 Support Vector Machines with Linear 

Kernel 

41 Polynomial Kernel Regularized Least 

Squares 

95 Support Vector Machines with Linear 

Kernel 

42 Radial Basis Function Kernel 

Regularized Least Squares  

96 L2 Regularized Support Vector Machine 

(dual) with Linear Kernel 

43 Least Angle Regression 97 Support Vector Machines with Polynomial 

Kernel 

44 Least Angle Regression 98 Support Vector Machines with Radial Basis 

Function Kernel 

45 The lasso 99 Support Vector Machines with Radial Basis 

Function Kernel 

46 Linear Regression with Backwards 

Selection 

100 Support Vector Machines with Radial Basis 

Function Kernel 

47 Linear Regression with Forward 

Selection 

101 Bagged CART 

48 Linear Regression with Stepwise 

Selection 

102 Partial Least Squares 

49 Linear Regression 103 Wang and Mendel Fuzzy Rules  

50 Linear Regression with Stepwise 

Selection 

104 eXtreme Gradient Boosting 

51 Model Tree 105 eXtreme Gradient Boosting 

52 Model Rules 106 eXtreme Gradient Boosting 

53 Multi-Layer Perceptron 107 Self-Organizing Maps 

54 Multi-Layer Perceptron, with multiple 

layers 

  

 

 

 

 


